This edition of Journal of Molecular Biology represents the first installment of a special edition on “ribosomes and protein synthesis” to coincide with the EMBO Ribosome Structure and Function Meeting that takes place from July 6-10th in Strasbourg, France, 2016. This meeting is part of a long series of ribosome meetings that have occurred triennially over the past 40 years, with previous meetings being held in Cape Cod, USA (2007), Orvieto, Italy (2010) and most recently in Napa Valley, California, USA (2013). This year, we are happy to announce that the ribosome meeting in Strasbourg will be conducted within the framework of an EMBO conference.

As evident from the depth and breadth of the scientific program, the EMBO ribosome meeting in Strasbourg 2016 brings together world experts on many different aspects of the structure and function of the ribosome. This includes mechanistic insights into the core phases of translation initiation, elongation and termination but also regulatory aspects of translational control, including quality control. Such processes are dissected biochemically and structurally using a diverse array of cutting-edge technologies, ranging from single molecule fluorescence methodologies to state-of the art NMR, X-ray and cryo-EM techniques to genome-wide ribosome profiling analyses.

It is amazing to think that only 3 years ago at the Ribosome meeting in Napa, the resolution limit for cryo-EM reconstructions of ribosomal particles was >4 Å. Since then the development in the direct electron detection technologies has enabled rapid improvements in the resolution obtained using Cryo-EM, which is also evident at this meeting with many oral presentations illustrating the power of this technique to resolve high-resolution structures of ribosomes from diverse species as well as in distinct functional states. In a similar way, the vast improvements provided by next generation sequencing (NGS) technologies have revolutionized the genome-wide view on translation by different ribosomal profiling methods. It will be exciting to see at the meeting how the mechanistic insights from high-resolution molecular analyses will be connected to system-wide approaches for a more complete and holistic view on translation and its regulation.

On a more solemn note, we would like to mention the sudden death of Knud Nierhaus in Berlin on the 7th April, his 75th birthday. Knud was a pioneer in the ribosome field, who joined the Max-Planck-Institute for Molecular Genetics in Berlin in 1968. Knud published well over 300 publications related to ribosome function, encompassing the complete assembly map of the \textit{E. coli} large subunit in the 1970’s to the discovery of a third tRNA binding site, the E-site, on the ribosome in the 1980’s. In the past decades Knud has biochemically dissected the mechanism of action of various antibiotics and translation factors, including the identification of LepA (EF4) as a ribosomal back-translocase. Knud will be remembered for his energy and enthusiasm for all things ribosomal and will be a great loss to the ribosome community. We ask you to raise a glass of fine Alsace wine and toast with us to his memory.

Daniel Wilson
\textit{Gene Center and Department of Biochemistry, University of Munich, Feodor-Lynenstr. 25, 81377 Munich}
E-mail address: Wilson@lmb.uni-muenchen.de

Christian Spahn
\textit{Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany}
E-mail address: christian.spahn@charite.de

Marat Yusupov
\textit{Institute of Genetics and Molecular and Cellular Biology, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France}
E-mail address: marat@igbmc.fr